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Abstract. Employing a near exact Hylleraas wavefunction we calculate various third-order nonlinear optical
properties for the helium atom within the time-dependent Kohn-Sham theory. In our calculations we employ
the adiabatic local-density approximation (ALDA) for the exchange and correlation kernels fxc and gxc,
and compare the numbers obtained by us with the available accurate theoretical as well as experimental
results. Our results demonstrate the accuracy of ALDA for the calculation of nonlinear optical properties
of many electron systems.

PACS. 31.15.Ew Density-functional theory – 31.15.Md Perturbation theory – 32.10.Dk Electric
and magnetic moments, polarizability

1 Introduction

Time-dependent density functional theory (TDDFT) [1]
is being used extensively to obtain frequency dependent
response properties [2–7] of atoms and molecules, and
recently it has also been applied to determine excita-
tion energies [8] of atoms. The theory had first been ap-
plied without any rigorous justification for its existence
by Zangwill and Soven [2] and Stott and Zaremba [3] to
calculate frequency dependent polarizabilities and pho-
toabsorption cross-section of atoms and molecules. The-
oretical foundations of TDDFT were laid later in the
works of Deb and Ghosh [9], Bartolotti [10] and Runge
and Gross [11]. Like its static counterpart the theory is
exact in principle but its implementation requires ap-
proximating the exchange-correlation energy functional.
In most of the applications the adiabatic local-density
approximation (ALDA) is used. The results of these cal-
culations unequivocally show that both the polarizability
at zero frequency (static polarizability) and its frequency
dependence are overestimated. The error in the calcula-
tion of higher order polarizabilities and quadrupole po-
larizabilities is even more pronounced. The overestima-
tion is evidently due to the wrong asymptotic behaviour
of the density obtained with the local-density approx-
imation (LDA). Furthermore, the LDA also predicts a
smaller difference between the occupied and unoccupied
eigenvalues which leads to an overestimate of the fre-
quency dependence. In addition to these errors arising
from the unperturbed potential, response properties are
also affected by ALDA. This is because of two reasons:
further change in the potential itself is being calculated
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approximately, and secondly it is valid only in the limit
of zero frequency. There have been some attempts to rec-
tify these errors by improving the nature of LDA poten-
tials, particularly their asymptotic behaviour. Senatore
and Subbaswamy [6] applied a self-interaction correction
(SIC) method to improve the effective potential. Later,
Zong et al. [12] employed a scissors operator technique,
and Gisbergen et al. [7] devised a model potential with
desired asymptotic behaviour to improve the results for
polarizabilities. Recently, Gisbergen et al. [13] extended
the study of reference [7] by using an accurate exchange-
correlation potential for He, Be and Ne. All these stud-
ies show that by improving the asymptotic nature of the
potential both static and frequency dependence of the
polarizability can be improved significantly. The general
conclusion of these studies is that if the unperturbed
exchange-correlation potential is improved the kernels ob-
tained by using ALDA are reasonably accurate enough to
give linear polarizabilities comparable to their ab initio
and experimental counterparts.

Against this background, the question which then
arises is whether with the nearly exact exchange-
correlation potential (which essentially gives exact Kohn-
Sham (KS) orbitals), the ALDA for exchange-correlation
kernels fxc and gxc reproduces sufficiently accurate re-
sults for nonlinear polarizabilities – both its magnitude
as well as the frequency dependence. This is particularly
so because higher order response properties are more sen-
sitive to the approximation employed. In this paper we
address this question by studying the frequency depen-
dent hyperpolarizabilities of the helium atom. We con-
sider the helium atom because for it very accurate the-
oretical and experimental results corresponding to both
linear and nonlinear polarizabilities are available in the
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literature [14–19]. These results then provide a bench-
mark for testing the accuracy of ALDA. We calculate the
frequency dependent hyper-polarizabilities corresponding
to four different nonlinear (third order) optical processes.
These are γ(ω;ω,−ω, ω), γ(ω;ω, 0, 0), γ(2ω;ω, ω, 0) and
γ(3ω;ω, ω, ω) responsible for degenerate four wave mixing
(DFWM), Kerr effect, electric field-induced second har-
monic generation (EFISH) and third harmonic generation
(THG), respectively [20].

There are several methods available to calculate fre-
quency dependent response properties within TDDFT
[6,7]. We employ the variation-perturbation method [21]
in time-dependent KS (TDKS) formalism of TDDFT.
We choose this particular method because of its ease of
implementation. This method requires as input ground-
state single particle orbitals and the density of the sys-
tem. Since our aim is to study the accuracy of ALDA
we work with a nearly exact Kohn-Sham orbital for the
helium atom obtained from its 206-parameter Hylleraas
wave function [22].

The paper is organized as follows. In Section 2 we dis-
cuss the variation-perturbation approach in TDKS for-
malism and the way various frequency dependent hyper-
polarizabilities are computed variationally. In Section 3 we
present results of our calculations and discuss these. The
paper is concluded in Section 4.

2 Theoretical methods

2.1 Variation-perturbation methods in TDKS

The KS equation for a time-dependent potential is given
by [1]

[−
1

2
∇2 + vs(r, t)− i

∂

∂t
]ui(r, t) = 0 (1)

such that

ρ(r, t) =
∑
i

|ui(r, t)|
2, (2)

and the effective potential

vs(r, t) = vext(r, t) +
δEH [ρ(r, t)]

δρ(r, t)
+
δExc[ρ(r, t)]

δρ(r, t)
(3)

where ui(r, t) are the time-dependent KS orbitals, EH is
the Hartree energy and Exc is the exchange-correlation
energy. The external potential has two components

vext(r, t) = vo(r) + v(1)
app(r, t) (4)

here vo(r) is the time-independent nuclear potential and
the applied potential

v(1)
app(r, t) = v

(1)
stat(r) + v

(1)
dyn(r, t) (5)

has both a static (v
(1)
stat(r)) as well as a time-dependent

(v
(1)
dyn(r, t)) part. Here we take the time-dependent part to

be periodic in time with time period ω, that is

v
(1)
dyn(r, t) =

1

2
v

(1)
dyn(r)(eıωt + e−ıωt) (6)

so that the total applied field is also periodic with the
same frequency.

Response to the applied field to various orders is calcu-
lated using the time-dependent perturbation theory. For
this ui(r, t) are expanded in perturbation series and the
resulting equations for each order is solved. As is well-
known [23–25], to avoid difficulties arising from secular
terms, it is better to separate out the overall phase fac-
tor from the orbitals ui(r, t) and work instead with trans-
formed orbitals χi(r, t). This separation of the phase part
makes the structure of resulting perturbation equations
similar to that of the static case and also ensures the cor-
rect zero-frequency behaviour of perturbed orbitals. The
perturbative equation for nth order orbital χ(n) is

(H(o) − εo − i
∂

∂t
)χ(n) +

n∑
i=1

(H(i) − ε(i))χ(n−i) = 0 (7)

and the normalization condition

〈χ(o)|χ(n)〉 = 〈χ(n)|χ(o)〉 = −
1

2

n−1∑
i=1

〈χ(i)|χ(n−i)〉. (8)

Here, H(o) is the unperturbed Hamiltonian and H(i) is
the ith order correction to the Hamiltonian arising due to
self-consistent screening:

H(i) = v(1)
appδi1 +

∞∑
n=1

1

n!

∫
δ(n+1)EHxc

δρ(r, t)δρ(r1, t) · · · δρ(rn, t)

×∆ρ(r1, t) · · ·∆ρ(rn, t)dr1 · · · drn (9)

with

∆ρ(r, t) =
∑
i

ρ(i)(r, t) (10)

and ε(i) denotes ith order change in the time-dependent
KS eigenvalue. Furthermore, following expressions are ob-
tained for the time-average energies which are related to
dynamic polarizabilities of the system to different orders

E(1) =

{∫
v(1)(r, t)ρ(o)(r)dr

}
average

E(2) =
{
〈χ(1)|Ho − εo|χ

(1)〉

+〈χ(1)|v(1)|χ(o)〉+ 〈χ(o)|v(1)|χ(1)〉 +
1

2

×

∫
δ2EHxc[ρ]

δρ(r1)δρ(r2)
ρ(1)(r1, t)ρ

(1)(r2, t)dr1dr2

}
average
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pi = p0
i + αij(0)Ej(0)

+αij(−ω;ω)Ej(ω) cosωt+
1

2
βijk(0; 0, 0)Ej(0)Ek(0) +

1

4
βijk(0;ω,−ω)Ej(ω)Ek(ω) + βijk(0;ω,−ω)Ej(ω)Ek(ω) cosωt

+
1

4
βijk(2ω;ω, ω)Ej(ω)Ek(ω) cos 2ωt+

1

6
γijkl(0; 0, 0, 0)Ej(0)Ek(0)El(0) +

1

4
γijkl(0;ω,−ω,0)Ej(ω)Ek(ω)El(0)

+
1

2
γijkl(ω;ω, 0, 0)Ej(ω)Ek(0)El(0) cosωt+

1

8
γijkl(ω;ω,−ω,ω)Ej(ω)Ek(ω)El(ω) cosωt

+
1

4
γijkl(2ω;ω,ω, 0)Ej(ω)Ek(ω)El(0) cos 2ωt+

1

24
γijkl(3ω;ω,ω, ω)Ej(ω)Ek(ω)El(ω) cos 3ωt+ · · · (17)

E(3) =
{
〈χ(1)|H(1) − ε(1)|χ(1)〉

+
1

6

∫
δ3EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)
ρ(1)(r1, t)

×ρ(1)(r2, t)ρ
(1)(r3, t)dr1dr2dr3

}
average

E(4) =
{
〈χ(2)|Ho − εo|χ

(2)〉

+〈χ(2)|H(1) − ε(1)|χ(1)〉+ 〈χ(1)|H(1) − ε(1)|χ(2)〉

+
1

2

∫
δ2EHxc[ρ]

δρ(r1)δρ(r2)
ρ(2)(r1, t)ρ

(2)(r2, t)dr1dr2

+
1

2

∫
δ3EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)
ρ(1)(r1, t)

×ρ(1)(r2, t)ρ
(2)(r3, t)dr1dr2dr3

+
1

24

∫
δ4EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)δρ(r4)
ρ(1)(r1, t)ρ

(1)(r2, t)

×ρ(1)(r3, t)ρ
(1)(r4, t)dr1dr2dr3dr4

}
average

. (11)

In equation (11), Ho = H(0) − i∂/∂t, sum over occupied
orbital is implicit, and curly bracket denotes the time av-
erage over a period of the applied perturbation. The av-
erage energy expressions above follow from the (2n + 1)
theorem. Thus only χ(1) is required to obtain energy up
to order 3. The even-order energy changes E(2) and E(4)

are stationary [21] (minimum for ω < εo and ω < εo/2
corresponding to E(2) and E(4), respectively ) with re-
spect to χ(1) and χ(2), respectively. It is this variational
nature of energies that we make use of to calculate the
dynamic hyper-polarizabilities of the helium atom. The
relationship between different hyper-polarizabilities, even-
order energies and orbitals χ(1) and χ(2) is discussed below
in Section 2.2 of the present section.

For the calculation of optical response properties,

v
(1)
stat(r) and v

(1)
dyn(r) are of the form (in dipole approxi-

mation)

v
(1)
stat(r) = v

(1)
dyn(r) = Er cos θ (12)

where E is the field strength in the z-direction. As the
overall phase part has been removed from the orbitals,
the time dependence of χ has the following form [24,25]

for applied perturbation given by equation (5)

χ(1)(r, t) = χ
(1)
+1(r)eiωt + χ

(1)
−1(r)e−iωt + χ

(1)
0 (r)

χ(2)(r, t) = χ
(2)
+2(r)e2iωt + χ

(2)
−2(r)e−2iωt

+ χ
(2)
+1(r)eiωt + χ

(2)
−1(r)e−iωt + χ

(2)
0 (r) (13)

where χ
(i)
±,0 depend only on the spatial co-ordinate. These

are the functions which are determined variationally. The
variational forms we choose are

χ
(1)
±1,0 = ∆1

±1,0(r)χ(o)(r) cos θ

χ
(2)
±2 = [∆2

±2(r) +∆3
±2(r) cos2 θ]χ(o)(r) + λ±2χ

(o)(r)

χ
(2)
±1 = [∆2

±1(r) +∆3
±1(r) cos2 θ]χ(o)(r) + λ±1χ

(o)(r)

χ
(2)
0 = [∆2

0(r) +∆3
0(r) cos2 θ]χ(o)(r) + λ0χ

(o)(r) (14)

where

∆i(r) = air + bir
2 + cir

3 + · · · (15)

is a polynomial with ai, bi, ci, . . . being the variational pa-
rameters, and λ±2,±1,0 are chosen such that normalization
condition (Eq. (8)) is satisfied for the second-order or-
bitals. In the present calculations we have chosen seven pa-
rameters for each of the ∆i. We have found that with seven
parameters results for hyper-polarizabilities converge up
to second decimal place. These results are obtained by
employing Gunnarson-Lundquist parametrization [26] of
correlation energy.

2.2 Calculation of response properties

The response properties are described in terms of po-
larizabilities by expanding the dipole moment in terms
of applied field corresponding to the potential of equa-
tions (5, 6).

E = E(0) +
1

2
E(ω)(eıωt + e−ıωt) (16)

as
see equation (17) above.

For an atom in the s-state (spherically symmetric), the
static dipole p0

i and the first order hyper-polarizabilities
β are zero. Moreover, for this system γijkl has two inde-
pendent components namely, γzzzz and γzzxx [20]. In this
paper we only calculate the component γzzzz .
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γ(3ω;ω, ω,ω) = 96
{
〈χ(1)

+3|H
(2)
+2 − ε

(2)
+2|χ

(1)
+1〉+ 〈χ(1)

−1|H
(2)
−2 − ε

(2)
−2|χ

(1)
−3〉+ 〈χ(1)

+3|H
(1)
+1 − ε

(1)
+1|χ

(2)
+2〉+ 〈χ(2)

−2|H
(1)
−1 − ε

(1)
−1|χ

(1)
−3〉

+〈χ(2)
−2|H

(1)
−3 − ε

(1)
−3|χ

(1)
+1〉+ 〈χ(1)

−1|H
(1)
−3 − ε

(1)
−3|χ

(2)
+2〉+

∫
δ3EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)
ρ

(1)
+1(r1)ρ

(1)
−3(r2)ρ

(2)
+2(r3)dr1dr2dr3

+
1

6

∫
δ4EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)δρ(r4)
ρ

(1)
+1(r1)ρ

(1)
+1(r2)ρ

(1)
+1(r3)ρ

(1)
−3(r4)dr1dr2dr3dr4

}
(20)

γ(2ω;ω, ω,0) = 16
{
〈χ(1)

+2|H
(2)
+1 − ε

(2)
+1|χ

(1)
+1〉+ 〈χ(1)

−1|H
(2)
−1 − ε

(2)
−1|χ

(1)
−2〉+ 〈χ(1)

+2|H
(2)
+2 − ε

(2)
+2|χ

(1)
0 〉+ 〈χ(1)

0 |H
(2)
−2 − ε

(2)
−2|χ

(1)
−2〉

+〈χ(1)
+2|H

(1)
+1 − ε

(1)
+1|χ

(2)
+1〉+ 〈χ(2)

−1|H
(1)
−1 − ε

(1)
−1|χ

(1)
−2〉+ 〈χ(1)

+2|H
(1)
0 − ε(1)

0 |χ
(2)
+2〉+ 〈χ(2)

−2|H
(1)
0 − ε(1)

0 |χ
(1)
−2〉

+〈χ(1)
−1|H

(1)
−2 − ε

(1)
−2|χ

(2)
+1〉+ 〈χ(2)

−1|H
(1)
−2 − ε

(1)
−2|χ

(1)
+1〉+ 〈χ(1)

0 |H
(1)
−2 − ε

(1)
−2|χ

(2)
+2〉+ 〈χ(2)

−2|H
(1)
−2 − ε

(1)
−2|χ

(1)
0 〉

+

∫
δ3EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)
(ρ

(1)
+1(r1)ρ

(1)
−2(r2)ρ

(2)
+1(r3) + ρ

(1)
0 (r1)ρ

(1)
−2(r2)ρ

(2)
+2(r3))dr1dr2dr3

+
1

6

∫
δ4EHxc[ρ]

δρ(r1)δρ(r2)δρ(r3)δρ(r4)
(ρ

(1)
+1(r1)ρ

(1)
+1(r2)ρ

(1)
0 (r3)ρ

(1)
−2(r4) + ρ

(1)
+1(r1)ρ

(1)
0 (r2)ρ

(1)
+1(r3)ρ

(1)
−2(r4)

+ρ
(1)
0 (r1)ρ

(1)
+1(r2)ρ

(1)
+1(r3)ρ

(1)
−2(r4))dr1dr2dr3dr4

}
(21)

As pointed out earlier [21], it is possible to deter-
mine directly from E(4) polarizabilities which are asso-
ciated with dipole moment oscillating at frequency ω (see
Eq. (17)). More specifically, when only a time-dependent
field at frequency ω is applied to the system, the fourth-
order energy change E(4) can be written as

E(4)

E4
=

3

192
γ(ω;ω,−ω, ω). (18)

Furthermore, when a static field (field with ω = 0) is
added with the time dependent field (Eq. (18)) modifies to

E(4)

E4
=

[
1

64
γ(ω;ω,−ω, ω)

+
1

8
γ(ω;ω, 0, 0) +

1

24
γ(0; 0, 0, 0)

]
. (19)

Thus, by using equation (18) we directly obtain
γ(ω;ω,−ω, ω) by minimizing the fourth-order change in
the energy when only a time-dependent field is applied.
Similarly, equation (19) gives us γ(ω;ω, 0, 0) directly from
E(4) with both static and dynamic fields applied. On the
other hand, to determine hyper-polarizabilities which are
not associated with dipole moments oscillating at fre-
quency ω we make use of the 2n+ 1 rule for time depen-
dent perturbation theory [27,28]. According to this rule it
is possible to determine third-order hyper-polarizabilities
using wavefunctions up to second-order. Application of
this rule gives the following expression for γ(3ω;ω, ω, ω)
in terms χ(1) and χ(2)

see equation (20) above.

In the above expression, superscripts denote order of per-
turbation and subscripts correspond to the components of
oscillating frequency.

Thus, to evaluate γ(3ω;ω, ω, ω) one needs first-order
orbital χ(1) oscillating at frequency ω and 3ω and χ(2)

at 2ω. Orbitals χ
(1)
±1(r) and χ

(1)
±3(r) are obtained by min-

imizing E(2) given by equation (11) with respect to χ(1)

at frequency ω and 3ω, respectively. Then minimization

of E(4) with respect to χ(2) gives χ
(2)
±2(r). By substituting

these orbitals in equation (20) we determine γ(3ω;ω, ω, ω).
Similarly, γ(2ω;ω, ω, 0) can be also expressed in terms of
χ(1) and χ(2) as

see equation (21) above.

Using a similar procedure as described for γ(3ω;ω, ω, ω),
we evaluate γ(2ω;ω, ω, 0) from equation (21). Results of
these calculations are discussed in the next section.

Table 1. Dynamic hyperpolarizabilities of helium atom in
atomic units (a.u.).

ω (a.u.) Kerr DFWM EFISH THG

0.0 46.66 46.66 46.66 46.66

0.02 46.75 46.85 46.90 47.17

0.04 47.04 47.42 47.74 48.90

0.06 47.53 48.42 49.22 52.07

0.08 48.23 49.86 51.44 57.12

0.10 49.16 51.84 54.55 64.89

0.12 50.33 54.44 58.81 77.02

0.14 51.77 57.81 64.60 97.02

0.16 53.51 64.88 77.66 165.5

0.18 55.60 67.96 83.77 311.8

0.20 58.09 75.70 100.3 538.7
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Fig. 1. Plot of γ(ω;ω, 0, 0)/γ(0; 0, 0, 0) (Kerr effect) as a func-
tion of ω for the helium atom; solid line: our result and dashed
line: reference [14].
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Fig. 2. Plot of γ(ω;ω,−ω,ω)/γ(0; 0, 0, 0) (DFWM) as a func-
tion of ω for the helium atom; solid line: our result and dashed
line: reference [14].

3 Results and discussions

In order to provide a proper understanding of our results
for nonlinear optical properties, we start with a brief dis-
cussion of linear polarizability α(ω) of the helium atom
as obtained in our calculations. The static value of linear
polarizability α(0) obtained by us is 1.390, which is quite
close to both the ab initio result 1.383 [14] and the exper-
imental value 1.38 [15]. To examine the frequency depen-
dence of α we fit the frequency dependent polarizability
with the formula [15]

α(ω) = α(0)
(
1 + C2ω

2
)
. (22)

This relation is valid for small values of ω, the coefficient
C2 is a measure of frequency dependence and is indepen-
dent of the static value. The result obtained by us for C2

is 1.18. Again, it compares well with the ab initio result
1.16 [14] and the experimental value C2 = 1.16 [15].

Next we present results for frequency dependent hyper-
polarizabilities in Table 1 for values of ω from 0 to 0.2 a.u.

0.00 0.05 0.10 0.15 0.20
1.0

1.2

1.4

1.6

1.8
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2.2

γ(
2ω

;ω
,ω

,ο
)  /

 γ
(ο

)

ω

Fig. 3. Plot of γ(2ω;ω,ω, 0)/γ(0; 0, 0, 0) (EFISH) as a function
of ω for the helium atom; solid line: our result and dashed line:
reference [14].
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)

ω

Fig. 4. Plot of γ(3ω;ω,ω, ω)/γ(0; 0, 0, 0) (THG) as a function
of ω for the helium atom; solid line: our result and dashed line:
reference [14].

(which is well below the resonance frequency for these pro-
cesses). The static value of hyper-polarizability γ(0; 0, 0, 0)
is 46.66; it differs by only 8% from the ab initio result
of Bishop and Pipin [14]. It is important to note that,
when the ground-state density obtained with the LDA
exchange-correlation is used for calculating the value of
γ(0; 0, 0, 0) it is 83.35 [29] which is off by about 45%.
This then clearly shows that by using accurate ground-
state orbitals and density along with ALDA for exchange-
correlation kernels one can obtain static nonlinear
response properties which are reasonably accurate in com-
parison to the ab initio results. To examine the effect of
ALDA on frequency dependence of hyper-polarizabilities
we plot γ(ω)/γ(0) as a function of frequency in Fig-
ures 1–4. For comparison we also display ab initio re-
sults [14] (shown by dashed lines) in Figures 1–4. It is
clear from these figures that for low frequencies ALDA
does reproduce the frequency dependence quite accurately
as compared to the ab initio results. In particular, for
ω ≤ 0.05 the agreement between our results and that
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of reference [14] is excellent. For, ω = 0.05 to 0.1 the
match is moderate for all hyper-polarizabilities. We note
that this frequency band is quite important from an ex-
perimental point of view. Going beyond this frequency
range, that is for ω > 0.1, the frequency dependence of all
the hyper-polarizabilities are substantially different from
ab initio results. For the coefficients of DFWM, Kerr ef-
fect and EFISH, the frequency dependence is almost the
same. On the other hand, deviation of THG coefficients
for large frequencies is much greater as evident from Fig-
ure 4. The results presented here also match quite well
with experimental values. For example, the experimental
value for γKerr = (3/2)(γzzzz(ω;ω, 0, 0)−γxxzz(ω;ω, 0, 0))
is 47.2 ± 3 at 5145 Å (ω ≈ 0.089 a.u.) [16]. Our the-
oretical value (determined by assuming Kleinman sym-
metry [30]) is 48.86 and it lies within the experimental
bound. Two more experimental results for Kerr effect at
6328 Å (ω ≈ 0.07 a.u.) are γKerr = 54 ± 4 [17] and 52 ± 8
a.u. [18]. Our value at this frequency is 47.67 which lies
within experimental bound of the second result.

4 Conclusion

In this paper we have assessed the accuracy of ALDA
in the calculation of nonlinear optical properties of the
helium atom. Our study clearly shows that with accu-
rate ground-state Kohn-Sham orbitals and densities, it
is possible to determine both static value and the fre-
quency dependence of hyper-polarizabilities up to ω =
0.1 a.u. employing the adiabatic local-density approxima-
tion for exchange-correlation kernel. The values thus ob-
tained compare well with the ab initio results. Moreover,
our results in this frequency range fall well within the
bounds of experimental values. Encouraged by these re-
sults we are now applying ALDA for calculating nonlinear
optical properties of heavier atoms within TDDFT.
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